
Report # MATC-KU: 152-3 Final Report
WBS: 25-1121-0005-152-3

Low-Cost 3-D LIDAR Development for
Transportation
Christopher Depcik, PhD
Professor
Department of Mechanical Engineering
University of Kansas

2023
A Cooperative Research Project sponsored by
U.S. Department of Transportation- Office of the Assistant
Secretary for Research and Technology

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest

of information exchange. The report is funded, partially or entirely, by a grant from the U.S.
Department of Transportation’s University Transportation Centers Program. However, the U.S.

Government assumes no liability for the contents or use thereof.

MATC

Nate Ahlgren
Graduate Student
Department of Mechanical Engineering
University of Kansas

Hongsheng He, PhD
Assistant Professor
Electrical Engineering and Computer Science
Wichita State University

Dang M. Tran
Undergraduate Student
Electrical Engineering and Computer Science
Wichita State University

Low-Cost 3-D LIDAR Development for Transportation

Christopher Depcik, Ph.D.
Professor
Department of Mechanical Engineering
University of Kansas

Nate Ahlgren
Graduate Student
Department of Mechanical Engineering
University of Kansas

Hongsheng He, Ph.D.
Assistant Professor
Electrical Engineering and Computer Science
Wichita State University

Dang M. Tran
Undergraduate Student
Electrical Engineering and Computer Science
Wichita State University

A Report on Research Sponsored by

Mid-America Transportation Center

University of Nebraska–Lincoln

July 2023

ii

TECHNICAL REPORT DOCUMENTATION PAGE
1. Report No.
 25-1121-0005-152-3

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Low-Cost 3-D LIDAR Development for Transportation

5. Report Date
July 2023
6. Performing Organization Code
Enter any/all unique numbers assigned to
the performing organization, if applicable.

7. Author(s)
Christopher Depcik, Ph.D., https://orcid.org/0000-0002-0045-9554
Hongsheng He, Ph.D., https://orcid.org/0000-0002-2810-865X

8. Performing Organization Report No.
25-1121-0005-152-3

9. Performing Organization Name and Address
University of Kansas, Department of Mechanical Engineering, 3144C Learned Hall,
1530 W. 15th Street, Lawrence, Kansas, USA, 66045-4709
Wichita State University, Department of Electrical Engineering and Computer
Science, Wichita, KS, 67260, USA

10. Work Unit No.

11. Contract or Grant No.
69A3551747107

12. Sponsoring Agency Name and Address
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Ave., SE
Washington, D.C. 20590

Mid-America Transportation Center
Prem S. Paul Research Center at Whittier School
2200 Vine St.
Lincoln, NE 68583-0851

13. Type of Report and Period Covered
Final Report, August 2020 -June 2023
14. Sponsoring Agency Code
MATC TRB RiP No. 91994-67

15. Supplementary Notes
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract
Mobile light detection and ranging (LIDAR) technology offers a significant opportunity to increase transportation safety and
efficiency. However, most commercial systems are prohibitively expensive for usage. Building on past efforts, two relatively
inexpensive three-dimensional single point LIDAR systems were generated. The third generation system demonstrated efficiency,
ease of use, and options for various resolution levels under the cost of $500. The fourth generation system enhanced the system by
removing leading edge bias while creating a standalone system that outpaces the prior generation by 12% in acquisition rate with a
resolution four times as dense. Subsequent use of this system with an adaptive active fusion network for scene depth estimation
provides upsampling and use of a convolutional spatial propagation network (CSPN) helps refine the full depth map. The
performance of proposed network was evaluated and compared with the state-of-the-art methods on the NYUv2 dataset, and the
experiment demonstrated its outperformance in reconstruction accuracy, reliance on the number of laser scans, and robustness.
Subsequently employing a novel Iterative Statistical Outliers Removal (ISOR) method removes noise from the system and the
upsampling methods. Finally, through the combination of upsampling and employing the ISOR method, a lower accuracy point
cloud from the fourth generation single-point 3-D LIDAR system can be enhanced to create an accurate 3-D point cloud bordering
on real time. This would make the complete system applicable for all transportation-based environments.
17. Key Words
Safety, Risk, Laser radar, Adaptive active fusion, Transportation

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
58

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

https://orcid.org/0000-0002-0045-9554
https://orcid.org/0000-0002-2810-865X

iii

Table of Contents

Disclaimer .. viii
Abstract .. ix
Chapter 1 Development of Low-Cost 3-D LIDAR Systems .. 1

1.1 Background ... 1
1.2 Problem Statement .. 1
1.3 3-D LIDAR Hardware .. 2
1.4 System Setup ... 5
1.5 Third Generation LIDAR Results and Discussion.. 8
1.6 Fourth Generation LIDAR Results and Discussion .. 15

Chapter 2 Depth Sensing Model ... 22
2.1 Background ... 22
2.2 Model Architecture ... 24

2.2.1 Encoder .. 27
2.2.2 Decoder .. 28
2.2.3 Adaptive Active Fusion ... 28
2.2.4 Spatial Propagation .. 31

2.3 Optimizing Function ... 33
2.4 Evaluation Metrics .. 34
2.5 Point Cloud Representation .. 34
2.6 Experiments .. 35
2.7 Results and Discussions .. 36
2.8 Conclusions ... 39

Chapter 3 Point-Cloud Outliers Removing ... 40
3.1 Background ... 40
3.2 Statistical-based filtering – Statistical Outliers Removal (SOR) 41
3.3 Iterative Statistical Outliers Removal (ISOR) .. 42
3.4 Evaluation Metrics .. 43
3.5 Results and Discussion ... 44
3.6 Conclusions ... 47

References ... 48

iv

List of Figures

Figure 1.1 Assembly of the LIDAR housing showing the complete third generation system. 6
Figure 1.2 Various images of the fourth generation LIDAR prototype system.............................. 6
Figure 1.3 Wiring schematic for third and fourth generation LIDAR systems 7
Figure 1.4 Screenshot of the Graphical User Interface for the third generation LIDAR system ... 8
Figure 1.5 Bag of sugar on a chair in front of a wall .. 9
Figure 1.6 (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and (Bottom) 2-D contour

plot of the bag of sugar in fig. 1.5 ... 10
Figure 1.7 Shoe on top of box used for testing third generation prototype 11
Figure 1.8 Low accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and (Bottom)

2-D contour plot of the shoe in fig. 1.7 ... 12
Figure 1.9 Medium accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and

(Bottom) 2-D contour plot of the shoe in fig. 1.7 ... 13
Figure 1.10 High accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and

(Bottom) 2-D contour plot of the shoe in fig. 1.7 ... 14
Figure 1.11 (Left) Displays capabilities and issues with the high frequency vertical (HFV)

program; (Right) Shows capabilities of the updated HFV program 15
Figure 1.12 3-D LIDAR scan of trees and converging fence lines as shown in the picture of fig.

1.13 .. 16
Figure 1.13 Picture of converging fence lines and two trees, one overhanging the fence and the

other behind the fence ... 17
Figure 1.14 3-D LIDAR scan of tree and runoff ditch as shown in the picture of fig. 1.15 17
Figure 1.15 Picture of tree and runoff ditch with the tree in front of the ditch 18
Figure 1.16 3-D LIDAR scan of the 1974 Volkswagen Beetle as shown in the picture of fig. 1.17

 ... 19
Figure 1.17 Picture of a 1974 Volkswagen Beetle ... 19
Figure 1.18 3-D LIDAR scan of a parking lot with a Ford Ranger (closer) and Kia Soul (farther)

 ... 19
Figure 1.19 Picture of parking lot with Ford Ranger (closer) and Kia Soul (further). It is worth

noting that the scan was taken overnight to minimize vehicle movement, resulting in the
addition of vehicles in the image that were not present in the scan. 20

Figure 2.1 The overall framework of our depth completion network. Given a RGB-D input (304
× 228 × 4), the tensor first goes through 7 × 7 convolutional layer, following with 4
downsampling steps and 4 upsampling steps. Sparse depth map is directly mapped as
affinity to guide the depth completion. Notice the integration of the third generation LIDAR
system as described in the previous chapter. .. 25

Figure 2.2 Structure of the bottleneck residual block ... 27
Figure 2.3 Structure of the bottleneck residual block ... 28
Figure 2.4 Different spatial propagation strategies. Inputs of the recurrent model is sequence of

pixels in depth image. a) Spatial information is propagated linearly in specific direction as
Recurrent Neural Network (RNN). b) Spatial information is propagated in specific many-to-
one pattern (three-way connector). c) Spatial information is propagated using neighbor
pixels, similar to convolutional kernel operator. .. 33

Figure 2.5 Qualitative result of the proposed active fusion model. Sparse depthmap is collected
by composing three different sampling layers: 1) saliency map-ping with density

v

downsampling, 2) edge detecting, 3) grid-sketch distributing. The composing depth map
(second column) contains 6, 000 pixels, focusing on “most important” parts of an image. . 38

Figure 3.1 Example of performance of SOR filtering algorithm. Applying SOR filtering on
small-scale point cloud (196,133 points), which takes about 13.84 seconds to finish 42

Figure 3.2 Qualitative results of the point cloud refinement methods .. 46

vi

List of Tables

Table 2.1 Quantitative comparison of three depth completion models on NYUV2 validation set
 ... 37

Table 3.1 Quantitative comparison of two statistical outlier removal methods 47

vii

List of Abbreviations

Convolutional Neural Networks (CNN)
Convolutional Spatial Propagation Layer Network (CSPN)
Department of Transportation (DOT)
Graphics Processing Unit (GPU)
Graphical User Interface (GUI)
High Performance Computing (HPC)
Iterative Statistical Outliers Removal (ISOR)
Light Detection and Ranging (LIDAR)
Mean Absolute Error (MAE)
Mean Square Error (MSE)
Partial Differential Equation (PDE)
Rectified Linear Unit (ReLU)
Recurrent Neural Network (RNN)
Red, Blue, Green (RGB)
Reversed Huber (berHu)
Root Mean Square Error (RMSE)
Serial Clock Line (SCL)
Serial Data Analyzer (SDA)
Static Random-Access Memory (SRAM)
Statistical Outliers Removal (SOR)
Three-Dimensions (3-D)
Two-Dimensions (2-D)
United States (U.S.)
Universal Serial Bus (USB)
Volts Direct Current (VDC)

viii

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is disseminated in the

interest of information exchange. The report is funded, partially or entirely, by a grant from the

U.S. Department of Transportation’s University Transportation Centers Program. However, the

U.S. Government assumes no liability for the contents or use thereof.

ix

Abstract

Mobile light detection and ranging (LIDAR) technology offers a significant opportunity

to increase transportation safety and efficiency. However, most commercial systems are

prohibitively expensive. Building on past efforts, two relatively inexpensive three-dimensional

single point LIDAR systems were generated. The third generation system demonstrated

efficiency, ease of use, and options for various resolution levels with a cost of under $500. The

fourth generation system enhanced the system by removing leading edge bias while creating a

standalone system that outpaces the prior generation by 12% in acquisition rate with a resolution

four times as dense. Subsequent use of this system with an adaptive active fusion network for

scene depth estimation provides upsampling and use of a convolutional spatial propagation

network (CSPN) helps refine the full depth map. Performance of the proposed network is

evaluated and compared with the state-of-the-art methods on the NYUv2 dataset, and the

experiment demonstrates its outperformance in reconstruction accuracy, reliance on the number

of laser scans, and robustness. Subsequently employing a novel Iterative Statistical Outliers

Removal (ISOR) method removes noise from the system and the upsampling methods. Finally,

through the combination of upsampling and employing the ISOR method, a lower accuracy point

cloud from the fourth generation single-point 3-D LIDAR system can be enhanced to create an

accurate 3-D point cloud bordering on real time. This would make the complete system

applicable for all transportation-based environments.

1

Chapter 1 Development of Low-Cost 3-D LIDAR Systems

1.1 Background

As evident when reviewing past and current research projects supported by the United

States Department of Transportation (USDOT), mobile light detection and ranging (LIDAR)

technology offers a significant opportunity to increase transportation safety and efficiency [1].

Unfortunately, these projects typically rely on expensive commercial hardware that prevents

widespread usage and potentially mitigates LIDAR’s overall benefits. Previous efforts within the

PI’s laboratory resulted in the construction of an inexpensive LIDAR system ($300) that was

able to capture up to 700k data points for a respectively accurate point cloud; hence, setting the

stage for extensive implementation [2]. However, data collection took too long for effective

usage. As a result, this project built on past research by increasing the sampling and data

collection rate while enhancing connectivity and improving the post-processing of the point

cloud information. Overall, this ensures that a low-cost and mobile LIDAR system will be suited

for transportation-based safety outcomes.

1.2 Problem Statement

LIDAR cameras are a remote sensing method that enables effective monitoring of the

transportation environment [1]. LIDAR employs the use of near visible light waves to map the

surrounding environment in three-dimensions (3-D) [3]. Current applications include forest

mapping to track growth, modeling forest fire behavior, classifying land and environmental

types, and charting various other environments for a variety of purposes [4-7]. Ground-based

LIDAR systems can recognize various road types and identify defects in their respective surfaces

while monitoring the environment surrounding roads for potential dangers, such as landslides [8,

9]. While these applications illustrate LIDAR’s propensity to provide accurate and detailed

2

representations, it is often costly to collect these data while respectively difficult to analyze the

point cloud files that result from the collocation of this information [4]. Commercial LIDAR

systems are highly capable; however, their individual cost ($6k to $100k [10]) might be

excessive and outweigh their benefits [11]. As a result, a cost-effective LIDAR system is needed

and a previous effort within the PI’s laboratory demonstrated success in generating 3-D point

clouds [2] with equivalent accuracy to commercial systems used in other USDOT research

projects [12]. However, the previous system was too slow (i.e., two hours for a 700,000 data

point cloud) and image recognition needed improvement. Therefore, this project moved to a

more powerful LIDAR rangefinder to increase the sampling rate while incorporating new

hardware and software capabilities via image filtering techniques. These objectives required a

collaboration between Mechanical Engineering and Electrical Engineering and Computer

Science investigators and students. Two 3-D single point LIDAR systems are detailed in this

chapter. The first system was developed by undergraduate students as part of a capstone design

project at the University of Kansas. Details regarding this system (third generation) were

published in the American Society of Mechanical Engineers International Mechanical

Engineering Conference & Exposition and material in this report is taken from the corresponding

paper [13]. The second system was created by a graduate student (fourth generation) at the

University of Kansas and expanded the capabilities of the third generation system. Enhanced

image filtering techniques are described in later chapters.

1.3 3-D LIDAR Hardware

Previous work in this area at the authors’ institution included the fabrication of two

working prototypes. The first was assembled using a Garmin LIDAR-Lite v3 device as the range

sensor and an Arduino Mega 2560 v3 as the microprocessor [2]. This system had a final cost of

3

less than $300 and was able to generate 3-D point clouds with an accuracy similar to many

commercial systems. However, it had limited portability since it required a hard connection to a

large Direct Current power supply and needed a significantly longer amount of time (e.g., 130

minutes for a 700,000 data point cloud) than commercial systems. The second prototype

upgraded the hardware to a Garmin LIDAR-Lite v3HP rangefinder to increase update rates while

lowering current consumption and enhancing the microprocessor to a Raspberry Pi 4 Model B.

This lowered system runtime by increasing clock frequency and Static Random-Access Memory

(SRAM) capacity. This second prototype redesigned housing for the LIDAR rangefinder and two

28BYJ-48 Stepper Motors. While the housing was assembled with primarily 3-D printed

components, after testing it was found to have stability deficiencies and was inadequate in

supporting the weight of the motors, leading to offset points in the generated point clouds.

For the third and fourth generation prototypes, a Garmin LIDAR-Lite v3HP optical

sensor was selected. The Garmin product was chosen as it provided sufficient performance for

the LIDAR system’s application at a reasonable cost ($150), since low cost is a key project

outcome. The other options considered were the TF03 Long-Distance LIDAR Module ($230)

and TeraRanger Evo 60m USB ToF Rangefinder ($118). The Garmin LIDAR Lite v3HP

provides the fastest update rate while requiring the lowest current, along with being packaged at

a reasonable size and weight to ensure smooth translation during data acquisition. Although it is

not the least expensive rangefinder available, it is the ideal component for this application as it

provides accurate distance readings (+/- 2.5 cm at distances > 2 m) within its range for a

relatively low cost.

For both the vertical and horizontal motors, HiLetgo 28BYJ-48 stepper motors were

chosen due to their low cost and high precision. Three other motors were considered, a SureStep

4

Nema 8 Bipolar stepper motor, and both STEPPERONLINE short and SureStep full-bodied

Nema 17 stepper motors. The 28BYJ-48 is capable of 64 steps per revolution, which itself does

not outpace the other motors (200, 200, and 400 steps per revolution, respectively). However,

coupled with a gear reduction ratio of 64, the 28BYJ-48 can produce a total output of 4096 steps

per revolution, outperforming the others significantly. In addition to its higher precision, the

28BYJ-48 motors are unipolar whereas the other motors considered are bipolar, meaning that

switching direction is more complicated and requires an H-bridge logic board, like a HiLetgo

STMicroelectronics L298N. Due to the fact that the system oscillates horizontally while

capturing data, the ability to switch direction quickly and easily is important. An H-bridge logic

board would also require an additional 6 VDC battery supply, which increases the size and cost

of the system. The 28BYJ-48 motors require a HiLetgo ULN2003 driver board; however, this

board is capable of powering itself from the microcontroller and it is designed to have a simple

plug connection to the motor, eliminating the chance for a wiring mistake. The 28BYJ-48 stepper

motors also have the benefit of being less expensive than the others. The drawback of this motor

is a limited torque output of 3.5 N×cm, which still outperforms the Nema B at 1.6 N×cm but falls

short of the Short Body Nema 17 and Full Body Nema 17 motors, at 13 N×cm and 48 N×cm,

respectively.

To run the code that controls the motors, rangefinder, and stores data in an efficient

manner, a relatively powerful microcontroller is needed. After researching cost-effective

microcontrollers, three options were analyzed: Raspberry Pi 4B, Rock Pi 4 Model C, and

Odroid-XU4. While the Rock Pi 4 and Odroid-XU4 offered similar performances to the

Raspberry Pi at nearly identical prices, the Raspberry Pi had the highest combination of

processing speeds (clock frequency) and available SRAM. A marginally larger size and slightly

5

higher cost were not significant enough factors to justify selecting another processor with

slightly less performance capabilities. Another Raspberry Pi strength is its library of

programming languages. For instance, Raspberry Pi’s support includes Scratch, Python, C++,

and JavaScript.

1.4 System Setup

To best fit the chosen stepper motor model, it was decided to utilize previous custom 3-D

printed components produced from a Stratasys Mojo 3-D printer (layer thickness: 0.018 cm)

designed specifically for the motors selected. Placed between the horizontal motor and the

component containing the rangefinder was a needle-roller thrust bearing (McMaster-Carr model

number: 5909K34). This allowed for a U-Bracket to be equally supported on all sides. A

multipurpose flanged sleeve bearing (McMaster-Carr model number: 7815K24) was used to

support the end opposite from the motor shaft by being placed through the rangefinder mount

and the U-Bracket. Both items helped minimize any undesirable interference of vibrations or tilt

without prohibiting full rotation range in both the vertical and horizontal directions. A detailed

Computer Aided Design drawing of the third generation assembly can be seen in Figure 1.1.

Subsequently, the LIDAR turret (everything above the horizontal stepper motor in fig.

1.1) was redesigned to accommodate bearings that, while also taking weight off the motor, allow

for movements that are more precise by reducing the degrees of freedom between the motor and

the component that it was moving. A potentiometer was also added that was driven off the motor

that drives horizontal motion to address problems in the third generation with the overall fourth

generation hardware seen in Figure 1.2.

6

Figure 1.1 Assembly of the LIDAR housing showing the complete third generation system

Figure 1.2 Various images of the fourth generation LIDAR prototype system.

The overall wiring diagram for both the third and fourth generations is shown in Figure

1.3. The rangefinder utilized Serial Clock Line (SCL) and Serial Data Analyzer (SDA) wires.

The SCL acted to synchronize all data transfers over an Inter-Integrated Circuit connection,

whereas the SDA was responsible for transfer of actual data. Both connections allowed for

7

communication between the rangefinder and the Raspberry Pi 4B’s general purpose input/output

pins. The SCL and SDA connections were paired with pull-up 4.7 kΩ resistors to restore the

SCL and SDA signals to high when the Raspberry Pi was not transmitting a low signal. The pull-

up resistors also ensured that the connections were given a well-defined voltage. The entire

system was powered by an external battery source (SlimThin 10000 mAh) connected to the

system with a Micro-Universal Serial Bus (USB) to USB cord.

Figure 1.3 Wiring schematic for third and fourth generation LIDAR systems

 The C++ language was first selected to program both LIDAR systems because of the

amount of control and precision it can provide. However, with no previous understanding of

basic coding in this language, there was a struggle trying to edit and adjust code functionality.

Ultimately, Python was chosen for its similarity to MATLAB and ample online resources

regarding the use of stepper motors. The code for the third generation prototype is available at:

https://github.com/depcik/LIDAR/tree/main/2021. The code for the fourth generation prototype

is available at: https://github.com/depcik/LIDAR/tree/main/2023.

https://github.com/depcik/lidar/tree/main/2021
https://github.com/depcik/LIDAR/tree/main/2023

8

1.5 Third Generation LIDAR Results and Discussion

A Graphical User Interface (GUI) was created to provide user interaction with the

system. The GUI was created in Python 3 on the Raspberry Pi to be used in conjunction with an

official Raspberry Pi 7” Touch Screen Display. The GUI displays a visual menu with four

interactable buttons: Low Accuracy, Medium Accuracy, High Accuracy, and Exit as seen in

Figure 1.4. When a button is selected on the touchscreen, a command is sent to the Raspberry Pi

4 to perform the desired outcome. The three accuracy buttons (low, medium, and high) have

embedded text to describe their intended purpose. Pressing each accuracy button starts the

LIDAR system and runs the code to allow for motor rotation and scanning to create a 3-D point

cloud. The buttons from left to right increase the time it takes for a scan to complete while

improving the accuracy of the 3-D point cloud. The accuracy is enhanced by increasing the

number of horizontal data points taken per degree that creates a denser 3-D point cloud with less

space in-between data points. It should be noted that the three options share the same number of

vertical data points taken and only vary in the horizontal direction. The amount of vertical data

points remains constant since the perceived slight enhancement in image quality on the vertical

axis is deemed initially inconsequential to the significant increase in scan time.

Figure 1.4 Screenshot of the Graphical User Interface for the third generation LIDAR system

9

The left button results in the lowest number of data points, while the middle button

increases the number of horizontal data points scanned by four times, and the right button

increases the number of horizontal data points scanned by eight times. These options produce

2700, 10800, and 21600 total data points, respectively, when the default values for degrees swept

in the horizontal (32.16°) and vertical (42.19°) direction are used. The approximate time to

complete a scan for the buttons from left to right are seven minutes, eleven minutes, and twenty-

three minutes, respectively.

As an initial test of the system, a bag of sugar with noticeable crinkling was placed on a

chair in front of a wall in Figure 1.5. Scanning the image took 7.24 minutes and a 3-D point

cloud, 2-D point cloud, and 2-D contour plot can be seen in Figure 1.6.

Figure 1.5 Bag of sugar on a chair in front of a wall

10

Figure 1.6 (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and (Bottom) 2-D contour
plot of the bag of sugar in fig. 1.5

While the outline of the sugar bag and chair can be easily seen, there were issues with the

system detecting a wall in the background. The different red colors indicate dissimilar depth

distances, which should not occur as the wall was a uniform distance away from the system. The

2-D point cloud also had too much space in between each point, limiting the resolution of each

plot produced. Although the image was relatively good in a short amount of runtime, sacrificing

time to achieve a more accurate point cloud became more ideal.

Since the rangefinder was rotating, it effectively moved away from the wall (as a function

of its starting point) during data collection. Thus, to correct the depth issue, the distance

11

measurement from the LIDAR was multiplied by the cosine of the horizontal angle as well as the

cosine of the vertical angle. By taking both angle measurements into account, the correct depth

was recorded. An object with more defined edges and unique shapes was used for the final test.

Figure 1.7 shows a shoe with uneven parts and edges on top of a box. Figure 1.8 is the 3-D point

cloud, 2-D point cloud, and 2-D contour plot created from the MATLAB code with the new data.

The total scan time for this test was 7.26 minutes.

Figure 1.7 Shoe on top of box used for testing third generation prototype

12

Figure 1.8 Low accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and (Bottom)
2-D contour plot of the shoe in fig. 1.7

 Overall, the outline of the shoe was evident along with the correct wall depth when

looking at the 2-D images; however, the 3-D point cloud did not provide a recognizable image.

Thus, the next step was to increase the number of data points recorded to improve accuracy. This

was accomplished two different ways: full stepping and half stepping. In full stepping, data are

recorded each full step of the motor whereas before, data was only recorded at the end of the

entire motor step. This led to four times as many data points and a more accurate 3-D point

cloud, 2-D point cloud, and 2-D contour plot of the same shoe and box setup in Figure 1.9 with

an overall run time of 11.27 minutes.

13

Figure 1.9 Medium accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and
(Bottom) 2-D contour plot of the shoe in fig. 1.7

This resulted in a more noticeable shoe shape in the 3-D point cloud (e.g., heel, facing,

and toe cap) with the 2-D images illustrating more ridges along the shoe. To further increase the

number of data points, half stepping was used where an additional step of data collection

occurred in between the full steps. Half stepping produces eight times as many points as the low

accuracy code and two times as many as full stepping. The same shoe-on-box setup was used

and the 3-D point cloud, 2-D point cloud, and 2-D contour plot results are seen in Figure 1.10,

respectively. In all three figures, the outline of the shoe becomes more evident along with a

distinct heel, sole, collar, facing, tongue, and toe cap. Interestingly, the logo of the shoe becomes

14

more noticeable as it starts to reflect the laser. The run time for this experiment was clocked at

22.58 minutes.

Figure 1.10 High accuracy (Top Left) 3-D point cloud, (Top Right) 2-D point cloud, and
(Bottom) 2-D contour plot of the shoe in fig. 1.7

Overall, three different levels of measuring accuracy were generated, able to produce

point clouds of 2700, 10800, and 21600 points, resulting in images of low, medium, and high

accuracy, respectively. The scan times are relatively short, with the most accurate at slightly over

23 minutes, the medium accuracy at approximately 11 minutes, and the low accuracy at a little

over 7 minutes. In addition to being able to capture images quickly and efficiently, the system is

also cheaper than many alternatives with a total cost of less than $500. The system also remains

15

respectively simple to use as the additions of a GUI, clean packaging, and an external battery

allow users to operate the system at any location.

1.6 Fourth Generation LIDAR Results and Discussion

Throughout the project, the third generation prototype was benchmarked and analyzed to

determine the abilities of the previous iteration and investigate where improvements could be

made for the fourth generation prototype. This effort emphasized two key areas where

improvements would make the biggest impact. The first is eliminating the “leading edge bias”

present in the third generation prototype, as well as in early iterations of the fourth generation

Python script. This bias can be seen on the left in Figure 1.11 with significant removal of the bias

as demonstrated on the right.

Figure 1.11 (Left) Displays capabilities and issues with the high frequency vertical (HFV)
program; (Right) Shows capabilities of the updated HFV program

By the end of the project, the leading edge bias was largely eliminated, and the maximum

resolution of the LIDAR system was quadrupled per unit area. To make the system more

versatile, three resolution settings were configured so that one could choose the resolution

required for a given scan. This allows the operator to do quick, low resolution scans when

16

precision is not paramount and slower, high resolution scans when more detailed scenes are

being measured. The program was also configured to run from boot using three push-to-start

buttons to scan a predefined range at each level of resolution.

 To demonstrate the applicability of the fourth generation system to classify land and the

environment in a real world scenario, Figure 1.12 provides a 3-D LIDAR point cloud of trees and

converging fence lines as shown in Figure 1.13. The tree overhanging the fence line can be seen

in the point cloud through respective shading. Additionally, the tree located behind the fence line

can be captured with relatively good accuracy. Similarly, Figure 1.14 provides a 3-D LIDAR

point cloud of a tree and runoff ditch as shown in Figure 1.15. Both the tree and runoff ditch can

be distinguished from the 3-D LIDAR point cloud demonstrating the successful ability of the

fourth generation prototype to identify land and the environment.

Figure 1.12 3-D LIDAR scan of trees and converging fence lines as shown in the picture of fig.
1.13

17

Figure 1.13 Picture of converging fence lines and two trees, one overhanging the fence and the
other behind the fence

Figure 1.14 3-D LIDAR scan of tree and runoff ditch as shown in the picture of fig. 1.15

18

Figure 1.15 Picture of tree and runoff ditch with the tree in front of the ditch

Subsequently, the fourth generation prototype was tested to determine if it could identify

automobiles in a real world environment. Figure 1.16 provides a 3-D LIDAR scan of a static

1974 Volkswagen Beetle as shown in Figure 1.17. The 3-D point cloud demonstrates high

accuracy in capturing the vehicle as evident through the wheel wells and the open door. Figure

1.18 provides a 3-D LIDAR scan of a parking lot as shown in Figure 1.19. The closer vehicle

(Ford Ranger) is seen with high accuracy, whereas the vehicle farther away (Kia Soul) starts to

blend in with the environment.

19

Figure 1.16 3-D LIDAR scan of the 1974 Volkswagen Beetle as shown in the picture of fig. 1.17

Figure 1.17 Picture of a 1974 Volkswagen Beetle

Figure 1.18 3-D LIDAR scan of a parking lot with a Ford Ranger (closer) and Kia Soul (farther)

20

Figure 1.19 Picture of parking lot with Ford Ranger (closer) and Kia Soul (further). It is worth
noting that the scan was taken overnight to minimize vehicle movement, resulting in the addition

of vehicles in the image that were not present in the scan.

The fourth generation prototype includes a user interface to allow for standalone, push-

to-start functionality with varying resolutions. This means off-the-grid applications would only

need a USB-C 5 VDC power source to run the device and conduct measurements. It builds off

the third generation prototype in providing three different accuracy options where run time

increases as accuracy increases. It outpaces its predecessor with a 12% higher acquisition rate

and has a configurable resolution that is four times as dense at peak resolution. Additionally, this

device can be run using only a power bank and USB-C cable to maximize its off-the-grid

capabilities. The lidar system is run by connecting it to power, waiting for the “ready” light to

illuminate, and selecting the scan precision. Final packaging is constructed to ensure the

prototype is as durable and versatile as possible. This includes a 0.25” acrylic sheet that holds all

the hardware and mounts to a tripod to maximize stability and point cloud accuracy. The

resulting fourth generation prototype is suited for static analysis of the environment (e.g., land,

vehicles), but is not fast enough to capture moving vehicles. The combination of all these factors

21

results in an ideal starting place for others to enhance the output and create an inexpensive

system that could be widely utilized. Subsequently deployment within the transportation sector

will aid in the recognition of low-quality or hazardous roadways and surfaces helping to create a

safer environment.

22

Chapter 2 Depth Sensing Model

Material in the next two chapters is taken from the published paper of the PI and Co-PI

and their students [14]. Depth sensing is an essential problem for LIDAR performance. In this

report, we propose a depth completion model that can improve the performance of depth sensing

in existing LIDAR systems. The proposed method is a convolutional neural network model,

following encoder-decoder architecture with convolutional spatial propagation layer network

(CSPN) for refinement and saliency detection plugin for visual attention. The preprocessing layer

takes a red, blue, green (RGB) image as input, and produces back three different outputs:

saliency map, edge map, and a uniform grid. The three outputs are fused with the depth map and

produce information centralized depth regions to become the inputs of the encoder-decoder

model. The spatial propagation layer takes the original depth map as input to produce affinity

matrices describing global information. The output of the encoder-decoder model uses affinity

information to iteratively perform the refining step. Through various evaluation metrics, such as

Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and

Delta δk, the proposed model illustrates the outperformance over CSPN and Sparse-To-Dense

models.

2.1 Background

Although there has been significant progress in controlling the quality of LIDAR scans,

research regarding the LIDAR sampling rate is still an open challenge. The main limitation of the

current cost-effective LIDAR systems is their time-consuming sampling rate compared with 3-D

LIDAR counterparts. There are two main approaches for increasing the sampling rate: hardware-

based and software-based. Although the hardware-based approach has more successful results

and research interests [15], this approach requires an additional hardware update cost, which may

23

be a trade-off with the cost-efficiency characteristics of the product. Meanwhile, the software-

based approach is still a fresh field that has not been thoroughly discovered yet.

For the software-based approach, there are two main methods to increase the depth

sensing density: 1) point cloud upsampling and 2) depth completing. Although there has been

significant research for point cloud upsampling [16-18], this method requires a dense point cloud

input, which is unsuitable for the real-time requirement of a depth sensing system. The second

approach (building a depth completion model) is a more promising method for a cost-effective

LIDAR system, since it can generate the depth stream in real-time.

Depth completion models have illustrated its importance and effectiveness in various

applications, such as target detection [19, 20], 3-D scene reconstruction [15, 21], and surface

defect detection [22-24]. These depth estimation methods rely on accurate 3-D LIDAR or Line-

Scan LIDARs, which capture dense depth maps of a scene in real time. These sensor fusion

methods cannot be directly applied on single-point depth sensors [25], which only sample one

point in a scan. The primary challenge in low-cost single-point LIDARs is to balance scanning

density and real-time performance, which are determined by the scanning strategy. For instance,

a high-resolution point cloud requires a sufficient sampling distribution of scans, which is time-

consuming to move the single-point sensor and perform scans. A mechanism that optimizes the

sampling ratio and distribution will significantly improve scanning efficiency and real-time

performance. The second challenge is the blurry outputs an image-based depth estimation model

usually obtains, such as the depth completion model using Convolutional Neural Networks

(CNNs) [26, 27]. The blurry results are attributed to the predictions solely coming from local

extracted features. Spatial propagation and affinities learning have been employed to obtain a

24

sharper depth estimation by maintaining global information and iteratively refining the depth

predictions [26, 28-30].

The rest of this chapter is organized as follows: First, we introduce the convolutional

neural network architecture of the depth completion model and its essential components/layers.

Next, we theoretically describe two additional add-on components of the network: 1) Saliency

Detection Layer for visual attention mechanism, and 2) Convolutional Spatial Propagation for

depth resolution refining. We then introduce evaluation metrics, experiment settings and results.

Finally, the conclusion section sums up our opinions of the results and future research directions.

2.2 Model Architecture

We proposed a depth completion model that takes RGB and sparse depth map as input,

and outputs a refined dense depth image, as shown in Figure 2.1. The model contains a

preprocessing layer using a visual attention mechanism, an encoder-decoder neural architecture,

and a convolutional spatial propagation layer for better quality results. The preprocessing layer

takes an RGB image as input and produces three different outputs: saliency map, edge map and a

uniform grid. The three outputs are fused with the depth map to produce information centralized

depth regions for input into the encoder-decoder model. The spatial propagation layer takes the

original depth map as input and produces an affinity matrix describing global information. The

output of the encoder-decoder model uses affinity information to iteratively complete the

refining step. The final output of the model after the nth iteration is the refined dense depth map,

which is ready for 3-D point cloud conversion.

25

Figure 2.1 The overall framework of our depth completion network. Given a RGB-D input (304
× 228 × 4), the tensor first goes through 7 × 7 convolutional layer, following with 4

downsampling steps and 4 upsampling steps. Sparse depth map is directly mapped as affinity to
guide the depth completion. Notice the integration of the third generation LIDAR system as

described in the previous chapter.

The method presented in this research uses RGB and the sparse depth map to predict a

dense depth image. The main challenge when developing the depth reconstruction model is the

difficulty in maintaining the global spatial information. Although convolution can capture local

relations, conventional convolutional-based models lack the ability to capture global information.

In this chapter, we design a spatial propagation network that can capture global information [28].

Global features are represented in the form of affinity matrices, which can be used for depth

refinement.

To reconstruct depth information, the model takes a sparse depth map 𝐷𝐷0 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 aligned

with the RGB image X ∈ Rm×n as input. The edge and saliency maps are extracted from an RGB

image and merged with the uniform grid map into a binary mask. The mask map is used to guide

the depth extraction process, concentrating the most essential information on the depth map for

the estimation. The extracted depth map and original RGB are used as inputs for the model. The

26

depth map is further routed directly to a spatial propagation layer to generate affinity matrices,

which are concatenated with the encoder-decoder output.

The model contains an encoder, which starts with a large convolution size of seven by

seven kernels that have max pooling, followed by four consecutive bottlenecks. The feature maps

are down-sampled by half their input size while the feature channel dimension is doubled.

Following He et al. [31], each bottleneck is a block of three consecutive convolution layers with

kernel choices [1,3,1] respectively. The Rectified Linear Unit (ReLU) activation function is used

at each layer. The bottleneck layers are used to compress information of the input feature map

into a latent representation.

The output feature map from the encoder is fed to the decoder, which is a sequence of

four up-sampling blocks. Following Laina et al. [32], each up-sampling block contains a padded

convolution layer (that does not change the size of the feature map input), an up-projection layer,

followed by a ReLU layer. Each up-sampling step uses information from the feature channel to

estimate back pixels in the up-scale feature map, which increases the shape of the feature map by

two while reducing the feature channel dimension by 22.

The sparse depth map 𝐷𝐷0 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 is routed directly to the Convolutional Spatial

Propagation Network (CSPN) layer to generate affinity matrices 𝐷𝐷𝑛𝑛 through 𝑛𝑛 iteration steps.

The CSPN [28] uses a recurring relation between nearby pixels to propagate spatial information

in a specific direction. Affinity matrices are generated by combining the propagation results from

different directions. The Convolution Spatial Propagation Network uses a convolution kernel to

instruct the propagating, which allows for the comopuation of affinity matrices in a single

iteration as anisotropic diffusion process. This approach increases the computation efficiency and

learning ability [28].

27

2.2.1 Encoder

The encoder extract feature maps from RGB-D tensor 304 × 228 × 4 uses convolution

operations. Feature maps are generated by applying a trainable kernel window size 𝑘𝑘 on the

specific stride 𝑠𝑠 and padding 𝑝𝑝. The sliding kernel window on the tensor input compresses

information locally and returns an embedded representation of features in a hidden dimension.

During this phase the channel dimension is also increased, while the width and height

dimensions are reduced by half on each sampling step.

The encoder contains four down-sampling layers. Each layer contains three residual

blocks with bottleneck architecture, as represented in Figure 2.2. [31]. It contains an identity and

residual information flow. In the identity path (top), original information from the input is

maintained. Meanwhile, information from residual path (bottom) is learned by the model and

identifies the number of useful layers from the learning process. Information from both paths is

combined using concatenation (⊕ operator). The ReLU activation function is used following the

He weight initialization method [33] for convolutional layers.

Figure 2.2 Structure of the bottleneck residual block

28

2.2.2 Decoder

The decoder component contains four up-sampling layers, where each layer doubles the

output dimensions (width and length) using compressed information within the channel

dimension. Each up-sampling step is an up-projection block defined by Laina et al. [32]. To

improve the robustness of unpooling, each layer is concatenated with a 5 × 5 convolution and a

ReLU activation. This up-sampling architecture is known as an up-convolution block.

Additionally, by stacking up four up-convolution blocks, the feature maps can be scaled up 16

times in width and height. Further following an extension proposed by Laina et al. [28], we adapt

the residual block architecture for up-projection, which can be described by Figure 2.3.

Figure 2.3 Structure of the bottleneck residual block

2.2.3 Adaptive Active Fusion

Visual attention mimics the behavior of human vision by concentrating on important

segments, therefore it is applied to condense information from the full depth map. This approach

allows the depth completion model to omit redundant information, only highlighting the most

29

important information of an image. Based on this idea, the visual attention layer can significantly

reduce the number of depth inputs required overhead and boost the depth prediction

performance. In this chapter, we apply a heuristic-based saliency method named log-spectrum

saliency, which is a static method applied on a single image. Log-spectrum saliency uses log

form representation of an image to perform salient localization. Log-spectrum of an image is a

frequency domain representation and has been commonly used in the fast semantic

categorization problem [34]. Images having the same semantic characteristics (such as

indoor/outdoor and maximum capturing distance) will have the same log patterns. Log-spectrum

representation is first used in saliency localization by Hou and Zhang [34]. The process

minimizes the information redundancy from the original image so only important pixels remain.

The log-spectrum method provides a convenient way to represent duplicating information in the

frequency domain.

Given an image 𝐷𝐷 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑐𝑐, its log spectrum ℒ(𝑓𝑓) in the frequency domain is

obtainable by using the Fourier Transform method 𝐽𝐽. We define ℛ(𝑓𝑓) as the spectral residual of

an image, which can be obtained through statistical analysis of ℒ(𝑓𝑓). More specifically, ℛ(𝑓𝑓)

can be defined as follows:

ℛ(𝑓𝑓) = ℒ(𝑓𝑓) −𝒜𝒜(𝑓𝑓) (2.1)

where 𝒜𝒜(𝑓𝑓) is a general shape of log spectra and defines the filtered region on the frequency

domain. 𝒜𝒜(𝑓𝑓) can be seen as a controllable prior hypothesis. However, Hou and Zhang [34]

used a heuristic method to approximate the size of this filter region using convolution operation

on log-spectrum input. 𝒜𝒜(𝑓𝑓) can be approximated as follows:

𝒜𝒜(𝑓𝑓) = 1
𝑛𝑛2
𝐽𝐽𝑛𝑛 ∗ ℒ(𝑓𝑓) (2.2)

where ∗ is a convolution operation, 𝐽𝐽𝑛𝑛 is a kernel of ones 𝑛𝑛 × n, defined as:

30

𝐽𝐽𝑛𝑛 = �

1 1 . . . 1
1 1 . . . 1
⋮ ⋮ . . . ⋮
1 1 . . . 1

� (2.3)

 Spectral residual ℛ(𝑓𝑓) is a compressed representation of the saliency map in the

frequency domain. It suppresses unimportant information and maintains non-trivial parts. To

obtain the saliency map 𝒮𝒮(𝑓𝑓) in the spatial domain, Inverse Fourier Transformation is applied as

follows:

𝒮𝒮(𝑓𝑓) = 𝒥𝒥−1�𝑒𝑒𝑒𝑒𝑒𝑒�ℛ(𝑓𝑓)��
2
 (2.4)

where 𝒥𝒥−1 is the Inverse Fourier Transformation and ℛ(𝑓𝑓) is a frequency domain signal.

 We recognized that saliency extraction alone is not sufficient for the depth prediction

problem. Significant information is not obtainable using a visual attention mechanism, such as

shapes and local boundaries. Therefore, an edge detection model is integrated along with the

saliency method. Here, we apply the standard Canny edge detecting method [35] due to its

computational efficiency for real-time application.

 The Canny detection algorithm uses intensity characteristics of an edge to perform the

recognition. The first order derivative gradient can be obtained in the horizontal direction 𝐺𝐺𝑥𝑥 and

vertical direction 𝐺𝐺𝑦𝑦 by convolution with Sobel kernel. The obtained derivatives can be used to

estimate gradient and direction as follows where 𝐺𝐺 is the local gradient and Θ is its direction

angle.

 Once the gradient 𝐺𝐺 and orientation angle Θ at each pixel are obtained, the Canny

algorithm can be applied to detect valid edges. Canny performs a non-maximum suppression on

each pixel before returning all possible edges existing in the image. The hysteresis thresholding

31

is then used to filter out invalid edges 𝐸𝐸(𝐺𝐺,Θ). For a more detailed overview about the edge

detection algorithm, see Canny [35].

 Although detected edges and saliency maps provide more compacted representation of

the input in centralized regions, depth prediction performance using these features alone is worse

compared to uniform depth sampling [28], especially in non-centralized regions. To increase the

generality of the depth mask, we perform two further preprocessing steps: 1) reduce the point

density on the saliency region, and 2) integrate uniform grid mask to capture information from

non-centralized regions. The grid mask 𝐺𝐺 contains 1000 pixels uniformly distributed through the

xy-dimension.

 The binary mask for depth image is obtained by applying the element-wise product ⊕ on

the filtered saliency map, edge map, and uniform grid mask as follows:

𝒟𝒟 = 𝒮𝒮∗(𝑓𝑓) ⊙𝐸𝐸(𝐺𝐺,Θ) ⊙𝒢𝒢 (2.5)

where 𝒮𝒮∗ is the filtered saliency map.

2.2.4 Spatial Propagation

Given a sparse depth input 𝐷𝐷0 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, the spatial propagation layer generates a feature

map in hidden space 𝐻𝐻 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑐𝑐 where 𝑐𝑐 is the feature dimension. We denote 𝐻𝐻𝑖𝑖,𝑗𝑗 is a cell of

feature map 𝐻𝐻, 𝐻𝐻0 is the feature map 𝐻𝐻 at iteration 0, 𝐻𝐻𝑖𝑖,𝑗𝑗,𝑡𝑡 is the cell at 𝑖𝑖, 𝑗𝑗 of H at iteration 𝑡𝑡.

Using these notations, Convolutional Spatial Propagation Network (CSPN) defines the

recurrence relation of hidden state 𝐻𝐻𝑖𝑖,𝑗𝑗,𝑡𝑡+1 as follows:

𝐻𝐻𝑖𝑖,𝑗𝑗,𝑡𝑡+1 = κ𝑖𝑖,𝑗𝑗(0,0) ⊙𝐻𝐻𝑖𝑖,𝑗𝑗,0 + � κi,j(a, b)

(𝑘𝑘−1)
2

𝑎𝑎,𝑏𝑏=−(𝑘𝑘−1)
2

⊙ Hi−a,j−b,t (2.6)

32

where κ ∈ 𝑅𝑅𝑘𝑘×𝑘𝑘 is the normalized kernel size 𝑘𝑘, 𝐻𝐻𝑖𝑖,𝑗𝑗,0 is a cell of 𝐻𝐻 at iteration 0, 𝐻𝐻𝑖𝑖−𝑎𝑎,𝑗𝑗−𝑏𝑏,𝑡𝑡 is a

cell of 𝐻𝐻 at iteration 𝑡𝑡. More specifically, κ𝑖𝑖,𝑗𝑗 can be defined by normalizing the equation:

κ𝑖𝑖,𝑗𝑗(𝑎𝑎, 𝑏𝑏) =

⎩
⎪
⎨

⎪
⎧ κ�i,j(𝑎𝑎, 𝑏𝑏)
∑ �κ�𝑖𝑖,𝑗𝑗(𝑎𝑎, 𝑏𝑏)�𝑎𝑎,𝑏𝑏≠0

 if a,b not 0

1 − � κ𝑖𝑖,𝑗𝑗(𝑎𝑎, 𝑏𝑏) otherwise
𝑎𝑎,𝑏𝑏≠0

 (2.7)

where κ� ∈ ℛ𝑘𝑘×𝑘𝑘 is a kernel size 𝑘𝑘. After 𝑛𝑛 iterations, CSPN returns a tensor 𝐻𝐻𝑛𝑛 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛×𝑐𝑐,

which is concatenated with a feature map from encoder-decoder components, and generates

refined results.

 Figure 2.4 illustrates an intuitive explanation of the spatial propagation mechanism.

Pixels of the depth image are used as the input for the Recurrent Neural Network (RNN) model.

Pixel 𝑥𝑥𝑘𝑘,𝑡𝑡−1 informs pixel 𝑥𝑥𝑘𝑘,𝑡𝑡 through a recurrence relation between hidden states ℎ𝑘𝑘,𝑡𝑡−1 and

ℎ𝑘𝑘,𝑡𝑡. Liu et al. [30] proposed linear recurrent propagation through a one-dimensional (1-D)

sequence as shown in Figure 2.4a. The idea is extended for multiple connectors [30] (fig. 2.4b)

and convolutional propagation [28] (fig. 2.4c).

33

Figure 2.4 Different spatial propagation strategies. Inputs of the recurrent model is sequence of
pixels in depth image. a) Spatial information is propagated linearly in specific direction as

Recurrent Neural Network (RNN). b) Spatial information is propagated in specific many-to-one
pattern (three-way connector). c) Spatial information is propagated using neighbor pixels, similar

to convolutional kernel operator.

2.3 Optimizing Function

To train the multiple regression model for depth estimation, we adopt the Reversed Huber

loss function [36]. According to Ma and Karaman [26], the Reversed Huber function is designed

to be less sensitive to large weight values than 𝐿𝐿2, and less sensitive to small weight values than

𝐿𝐿1. More specifically, Reversed Huber (denoted as berHu) is defined as follows:

ℬ(𝑒𝑒) = �
|𝑒𝑒| |e|<c

𝑒𝑒2 + 𝑐𝑐2

2𝑐𝑐
 otherwise

 (2.8)

where 𝑒𝑒 is the absolute difference between predicted depth 𝐷𝐷𝑛𝑛 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 and ground truth 𝐷𝐷∗ ∈

𝑅𝑅𝑚𝑚×𝑛𝑛 and 𝑐𝑐 is the 20% maximum absolute error threshold within the working batch.

34

2.4 Evaluation Metrics

To compare depth estimation performance from different approaches, we use three

different metrics that calculate depth residuals:

1. Root Mean Square Error (RMSE)

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷,𝐷𝐷∗) = �
1

|𝐷𝐷| �
|𝑑𝑑∗ − 𝑑𝑑|2

𝑑𝑑∈𝐷𝐷

 (2.9)

2. Mean Square Error (MSE)

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷,𝐷𝐷∗) =
1

|𝐷𝐷| �
(𝑑𝑑∗ − 𝑑𝑑)2

𝑑𝑑∈𝐷𝐷

 (2.10)

3. Mean Absolute Error (MAE)

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷,  𝐷𝐷∗) =
∑ |𝑑𝑑∗ − 𝑑𝑑|𝑑𝑑∈𝐷𝐷

|𝐷𝐷| (2.11)

where 𝐷𝐷 ∈ 𝑅𝑅304×228 is the predicted depth image, 𝐷𝐷∗ ∈ 𝑅𝑅304×228 is the ground truth, and 𝑑𝑑, 𝑑𝑑∗

are corresponding pixels of 𝐷𝐷, 𝐷𝐷∗. Beside residual measurement, we also evaluate model

accuracy using pixel relative similarity with predefined thresholds. The method is known as

Delta, which is defined as follows:

δ𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑑𝑑∗

𝑑𝑑
,
𝑑𝑑
𝑑𝑑∗
� < 𝑡𝑡 (2.12)

where 𝑡𝑡 is a threshold value and δ𝑡𝑡 ∈ [0,1]. The common choices for 𝑡𝑡 are {1.02, 1.05, 1.10}.

Delta with lower value of 𝑡𝑡 is much more sensitive when comparing pixel-similarity between

two depth images.

2.5 Point Cloud Representation

Once the resulting depth map is obtained from the fusion model, we convert it to a 3-D

point cloud for further processing. Point cloud representation opens more options for post-

35

processing algorithms, especially in filtering and refinement. Similarly, point cloud input from

the single-point sensor (third generation system) must be converted into an equivalent depth

frame before being sent to the fusion model. Therefore, we need a conversion method that can

interchangeably transform depth map to point cloud. We apply the depth-to-cloud conversion

mechanism using intrinsic camera parameters obtained from the chessboard calibration

procedure. Given a depth image 𝐷𝐷𝑛𝑛 ∈ 𝑅𝑅304×228, the algorithm maps each depth value pixel at the

𝑢𝑢-th row and 𝑣𝑣-th column to appropriate point coordinate (𝑥𝑥,𝑦𝑦, 𝑧𝑧) using focal lengths 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦 ,

center point offsets 𝐺𝐺𝑥𝑥, 𝐺𝐺𝑦𝑦, and skew values following the corresponding equation:

𝐷𝐷(𝑢𝑢, 𝑣𝑣) �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 𝑠𝑠 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� (2.13)

where 𝐷𝐷(𝑢𝑢, 𝑣𝑣) is the depth value of the pixel (𝑢𝑢, 𝑣𝑣) on the depth image. More specifically, the

point coordination can be defined as:

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑓𝑓𝑥𝑥 𝑠𝑠 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

�

−1

𝐷𝐷(𝑢𝑢, 𝑣𝑣) �
𝑢𝑢
𝑣𝑣
1
� (2.14)

where 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦, 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦, and 𝑠𝑠 can be obtained following the sensor calibration procedure.

2.6 Experiments

To evaluate the performance of the visual attention-based model, we trained and validated

our model on the NYUv2 dataset [37]. The NYUv2 dataset consists of 464 diverse indoor

scenes, where each sample is represented by an RGB image and depth frame. We used 249

scenes for training and preserved 215 for testing. To increase the training and testing size, we

followed the augmentation procedure described in Sun et al. [38]. In total, there are 47,585

generated samples for training and 655 samples for testing. The dataset consists of various types

36

of indoor environments such as living room, basement, kitchen, and bedroom. Each input is a

pair of RGB frame 𝑋𝑋 ∈ 𝑅𝑅640×480 and complete depth frame 𝐷𝐷∗ ∈ 𝑅𝑅640×480. To make the frames

suitable for input into the model, both RGB and depth image are first down-sampled and center-

cropped into a fixed size of 304 x 228. Each sparse depth map 𝐷𝐷0 ∈ 𝑅𝑅304×228 is generated from

the completed depth map 𝐷𝐷∗ that contains approximately 6,000 pixels. The complete depth map

𝐷𝐷∗ is used as ground truths for the training process. The models are developed in Pytorch, visual

attention layers are implemented using OpenCV in Python. The models are trained on 100

epochs using adaptive learning rate initialized with 𝑙𝑙𝑙𝑙 = 0.01. The models are trained through

Beoshock High Performance Computing (HPC) with Graphics Processing Unit (GPU) node

(Nvidia Tesla V100) and ≥ 64𝐺𝐺𝐺𝐺 memory resource. The training process took on average four

days on the server.

Following the proposed procedure in [28], the weights of the Encoder-Decoder are first

initialized from the pretrained model on ImageNet dataset. We found that with the learning rate

𝑙𝑙𝑙𝑙 = 0.01, the training took average two days to complete and stopped early, while 𝑙𝑙𝑙𝑙 = 10−3

extended the training process for week, but also expressed to be overfitting. To balance

performance between early-stopping and overfitting problem, we developed adaptive learning

optimizers with 𝑙𝑙𝑙𝑙 = 10−3 with a learning rate scheduler (will reduce the learning rate 20% after

3 consecutive epochs without performance improving), which is only triggered when the loss

value is sufficiently low. Using previous baselines as benchmark [28], we decided that RMSE <

0.12 is a good start condition to trigger the learning rate scheduler.

2.7 Results and Discussions

Table 2.1 shows the performance of different depth estimation models on various metrics.

Residual metrics (↓) computes difference between predicting depth and ground truth. The

37

smaller residual value indicates the better the model performs. In other hand, Delta metrics (↑)

computes similarity between prediction and ground truth. Larger 𝛿𝛿𝑡𝑡 value indicates that it is

harder to visually distinguish differences between prediction and ground truth depth map.

According to the table, the proposed model obtains smallest residual values (𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 0.003028,

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.055027, 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 0.019414) and highest 𝛿𝛿𝑡𝑡 values (𝛿𝛿1.02 = 0.999205, 𝛿𝛿1.05 =

0.999938, 𝛿𝛿1.10 = 0.999992), illustrates the outperformance over CSPN and Sparse-To-Dense.

More specifically, our model achieves 1.6 × better residual value than CSPN, and 11.3 × better

than Sparse-to-Dense in MSE. The proposed model is the only method obtain over 99% accuracy

in both three scale 𝑡𝑡 values.

Table 2.1 Quantitative comparison of three depth completion models on NYUV2 validation set

 This chapter CSPN Sparse2Dense

MSE 0.003028 0.004888 0.034214

RMSE 0.055027 0.069914 0.184969

MAE 0.019414 0.022062 0.087443

δ1.02 0.999205 0.998425 0.987042

δ1.05 0.999938 0.999830 0.997955

δ1.10 0.999992 0.999973 0.999472

To know whether depth estimation models suitable for real-time application, we

additionally evaluated the run time performances of three models on NYUv2 test set as

illustrated in fig 2.5. Both depth completion models can produce dense depth map in less than

38

0.2s, which is less than average duration for human reaction. More specifically, both our

proposed model and CSPN can produce full dense 304 × 228 depth map within 5 – 19 ms.

Sparse-to-Dense model can produce outputs even faster, within 0.8 − 4 ms. However, the quality

of depth map constructed from CSPN and our proposed model has significantly higher resolution

than Sparse-To-Dense, which indicates the trade-off between resolution and frame rate.

Figure 2.5 Qualitative result of the proposed active fusion model. Sparse depthmap is collected
by composing three different sampling layers: 1) saliency map-ping with density downsampling,

2) edge detecting, 3) grid-sketch distributing. The composing depth map (second column)
contains 6, 000 pixels, focusing on “most important” parts of an image.

39

2.8 Conclusions

This chapter proposed a fusion model for depth estimation and sensor integrating, using

cost-efficient sensing components to develop a robust and real-time perception system. We have

shown that visual attention mechanism helps improving the performance of depth prediction

while requires less depth samples. Saliency attention approach can decide most essential and

informative pixels from the original image. We proposed different depth sampling strategies, to

balance scanning density and real-time performance. The proposed method has shown to be

suitable for systems containing single-point depth sensors (see Chapter 1). Through experiments,

visual attention mechanism was proved to be an effective technique to improve depth predicting.

Despite the achieved system performance, the method is developed on indoor environment so

far, where maximum depth distance ≤ 10 m. The presented work has the potential for

development of cost-efficiency 3-D perception system from fusing.

40

Chapter 3 Point-Cloud Outliers Removing

The obtained point cloud from an upsampling model inevitably suffers from noise

contamination, due to the imperfect nature of depth estimation model performance and the

inherent noise of the acquisition device. Therefore, it is necessary to perform filtering operations

on output point clouds in order to obtain better point clouds before post processing. In this

chapter, we propose the Iterative Statistical Outliers Removal method (ISOR), a variation of the

Statistical Outliers Removal (SOR) family, that is faster and can handle an incomplete point

cloud.

3.1 Background

Point cloud filtering approaches have been well-studied and summarized by Han et al.

[35]. The current state-of-the-art point cloud filtering approaches that directly work on point

cloud input can be categorized into 7 groups: 1/ Partial Differential Equation based method

(PDE), 2/ Neighborhood-based method, 3/ Projection-based method, 4/ Signal processing-based

method, 5/ Statistical-based method, 6/ Hybrid filtering technique, and 7/ Other technique.

The statistical-based method has shown to be the fastest and most computational efficient

approach; thus, making it suitable for real-time problems. The statistical-based method makes

filtering decisions based on analyzed geometric and spatial features, such as color and intensity.

An important performance measure of a point cloud filtering approach is the time complexity.

Due to the significantly large number of point samples in the input (from hundreds of thousands

to millions of points per scene), the computation of the filtering algorithm for a direct point cloud

input can be significantly time-consuming. As a result, it is necessary to develop a filtering

algorithm that can filter the point cloud effectively for real-time performance.

41

One of the standard statistical-based point cloud filtering algorithms is the Statistical

Outliers Removal (SOR), which has shown to perform well for small and medium scenes. The

main limitation of this algorithm is when the captured scene contains more than 400, 000 points.

Because of the complexity and specificity of the point cloud data structure, the point cloud

processing algorithm can be significantly time intensive. There is no method so far that can

handle point cloud filtering process in real time. Secondly, with the current LIDAR systems

(both third and fourth generations), it is not possible to capture a dense point cloud in real-time.

Therefore, there is a requirement to have an algorithm that can handle partial point clouds.

3.2 Statistical-based filtering – Statistical Outliers Removal (SOR)

SOR-based approaches extract geometric information from local densities. The extracted

features are then used to compute statistical estimations and make final filtering decisions as

illustrated in fig. 3.1. Using local densities, the SOR-based approach is applicable for any point

cloud input, without further required assumptions. The common choice of geometric features for

the filtering process are surface normal, curvature differentiation, average distance. Since each

estimation is done within a local density, the SOR-based approach is expendable for parallel

computing. The main challenge with the basic SOR method is the run-time performance.

Although the method runs faster compared to surface interpolation and projection-based

approaches [39], the SOR method is only suitable for small- and medium- scale point clouds.

The run-time significantly decreases when the number of points increases over 400,000 [40]. The

second challenge of the SOR filtering method is the requirement of having a complete point

cloud as an input, which makes it suitable for post-processing. When the number of points in the

3-D scene significantly large, the filtering decision is slower due to the waiting time overhead for

the complete input, which prevents it from being applicable for real-time problems.

42

Figure 3.1 Example of performance of SOR filtering algorithm. Applying SOR filtering on
small-scale point cloud (196,133 points), which takes about 13.84 seconds to finish

3.3 Iterative Statistical Outliers Removal (ISOR)

The Iterative Statistical Outliers Removal (ISOR) method is an extension of the SOR

method and designed to handle an incomplete point cloud and achieve faster performance. By

including external memory stacks storing collecting points, ISOR has ability to handle a partial

point cloud in the memory, instead of waiting for the complete input. A designed state-machine is

used to make filtering decisions, whenever a SOR operator is applied on a partially collected

point cloud. The simple decision-making strategy is based on number of points existing in the

stacks, the direction movements and velocity of the servos. The SOR operator is a combination

of a 4-step function: 1) local densities generating; 2) geometry extracting; 3) statistical

estimating; and 4) statistical filtering.

43

Given the original point cloud input 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}, SOR first creates local densities

using the Kd-tree method. This Kd-tree will generate 𝑛𝑛 local densities. Each local density 𝑄𝑄𝑖𝑖 =

�𝑞𝑞1𝑖𝑖 , 𝑞𝑞2𝑖𝑖 , … , 𝑞𝑞𝑘𝑘𝑖𝑖 � with respect to querying point 𝑝𝑝𝑖𝑖(𝑖𝑖 ∈ 𝑛𝑛), contains 𝑘𝑘 nearest neighbor points

surrounding 𝑝𝑝𝑖𝑖. The SOR operator then extracts the average distance of 𝑄𝑄𝑖𝑖 with respect to 𝑝𝑝𝑖𝑖 as

follows:

𝑑𝑑𝑃𝑃𝑖𝑖 =
1
𝐾𝐾
� ��𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑗𝑗��
𝑗𝑗∈𝑄𝑄𝑖𝑖

 (3.1)

where 𝑞𝑞𝑗𝑗𝑖𝑖 ∈ 𝑄𝑄𝑖𝑖 and ��𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑗𝑗𝑖𝑖 �� is Euclidean distance between 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑗𝑗𝑖𝑖 . The extracted geometric

features 𝑑𝑑𝑃𝑃𝑖𝑖 are used to estimate back local distribution following:

𝐿𝐿𝐿𝐿(𝑝𝑝𝑖𝑖) =
1
𝐾𝐾
�𝑗𝑗 = 1𝑘𝑘𝑒𝑒

�
−��𝑝𝑝𝑖𝑖−𝑞𝑞𝑗𝑗

𝑖𝑖��
𝑑𝑑𝑃𝑃𝑖𝑖

�

(3.2)

where 𝐿𝐿𝐿𝐿(𝑝𝑝𝑖𝑖) ∈ [0,1] is statistical estimation of 𝑝𝑝𝑖𝑖, and 𝑑𝑑𝑃𝑃𝑖𝑖 is the average distance of 𝑄𝑄𝑖𝑖 with

respect to 𝑝𝑝𝑖𝑖. Use of a local distribution 𝐿𝐿(𝑝𝑝𝑖𝑖) indicates the likelihood of point 𝑝𝑝𝑖𝑖 to be an outlier.

A point 𝑝𝑝𝑖𝑖 is locally considered to be an outlier if its distance to its neighbors is exceptionally

high. More specifically, outliers can be defined as:

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = {𝑝𝑝𝑖𝑖|𝐿𝐿𝐿𝐿(𝑝𝑝𝑖𝑖) ≥ threshold} (3.3)

3.4 Evaluation Metrics

 To guarantee the quality of the point cloud output, we evaluated point cloud refining

algorithms on the obtained point cloud from the previous experiment. We compared the

developed ISOR method with standard filtering SOR on 5 different indoor scenes from the depth

completion experiment, measuring run-time and D-mean metric for accuracy performance. The

input depth map obtained from depth completion model first is converted to a point cloud.

44

Additional outliers are added uniformly into the point cloud to challenge the algorithm

performances at different scales. The D-mean metric is defined as follows:

𝑑𝑑(𝑃𝑃,𝑃𝑃∗) =
1
2

d′(P, P∗) +
1
2

d′(P∗, P) (3.4)

where 𝑃𝑃,𝑃𝑃∗ are origin point cloud and filtered point cloud respectively, 𝑑𝑑 is D-mean point cloud

distance, 𝑑𝑑′ is Euclidean point cloud distance which can be further defined as:

𝑑𝑑′�𝑃𝑃target,𝑃𝑃ref� = ��|𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖|�
𝑁𝑁

𝑖𝑖=1

 (3.5)

where 𝑝𝑝𝑖𝑖 is a point in target point cloud 𝑃𝑃target, 𝑞𝑞𝑖𝑖 (locating in 𝑃𝑃ref) is the closest point to 𝑝𝑝𝑖𝑖. The

D-mean metric can be used to measure point cloud differences.

3.5 Results and Discussion

The qualitative result of both methods is shown in fig. 3.2. The second column represents

the point cloud obtained from cloud conversion directly from the previous experiment. As one

can see, both ISOR and SOR methods can filter out “global outliers” – outliers that are

recognizable to not be a part of the origin point cloud. For less obvious regions, one can see that

both ISOR and SOR methods mutually agree on which points are outliers (3rd and 4th columns).

While the SOR method performs a more difficult filtering task, ISOR attempts to maintain the

origin information. There are white strikes on the ISOR’s results, which can be explained by

local property of the approach.

We compare run-time and accuracy performance (using D-mean) of the two methods in

Table 3.1. The ISOR algorithm runs faster than SOR algorithms in small and medium point cloud

scales. With the point cloud size 69,312 = 304 × 228, ISOR can run within 1 s while SOR

requires 14 s. The problem can be an extraneous problem when the size of point cloud increases

45

to ≥ 100,000, the run-time performance becomes an important issue. D-mean is used to measure

the difference between target point cloud and the ground truth. The smaller value of D-mean, the

better performance the method can achieve. As shown, the ISOR method also has a smaller D-

mean value in all scenarios. This result indicates two items: 1) By observing more complete and

global context, SOR can remove more points from the image, which can also remove important

information from the image; 2) Since it only makes a decision at the local-scale, ISOR filters less

points from the original image, which makes it faster while still retaining more information from

the original input.

46

Figure 3.2 Qualitative results of the point cloud refinement methods

47

Table 3.1 Quantitative comparison of two statistical outlier removal methods

 This Chapter (ISOR) SOR

 Runtime (s) ↓ D-mean ↓ Runtime (s) ↓ D-mean ↓

Office 1 1.132 32.288 14.664 556.623

Office 2 1.081 27.598 15.277 689.443

Office 3 1.064 3.6011 15.386 21.1999

Office 4 1.008 43.447 14.108 4661.4

Office 5 1.072 32.288 14.204 556.623

Table 7.209 8.381 95.665 139.174

3.6 Conclusions

The third and fourth generation single point 3-D LIDAR systems are a significant

improvement on their predecessors, and through upsampling to increase the depth sensing

density, a highly accurate point cloud can be generated. However, the system is still respectively

slow to be utilized in a real-time scenario when the system is configured for high accuracy. In

addition, upscaling the obtained point cloud from the single point 3-D LIDAR system inevitable

results in noise. Thus, a filtering operation is required to obtain better point clouds. Here, the use

of a novel Iterative Statistical Outliers Removal (ISOR) method demonstrates high accuracy in

removing outliers. Moreover, through the combination of upsampling and employing the ISOR

method, a lower accuracy point cloud from a single-point 3-D LIDAR system can be enhanced to

generate an accurate 3-D point cloud bordering on real time. This would make the complete

system applicable for all transportation-based environments.

48

References

1. Williams, Keith, Michael Olsen, Gene Roe, and Craig Glennie. 2013. "Synthesis of
Transportation Applications of Mobile LIDAR." Remote Sensing, 5 (9): 4652.

2. Wiklund, Theodore, Mark Heim, Jaret Halberstadt, Michael Duncan, Deven Mittman, T.
DeAgostino, and C. Depcik. 2019. "Design and Development of a Cost-Effective LIDAR
System for Transportation." ASME 2019 International Mechanical Engineering Congress
and Exposition, Salt Lake City, UT.

3. Puente, I., H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias. 2013. "Review of
mobile mapping and surveying technologies." Measurement, 46 (7): 2127-2145.

4. Kelly, M. and S. Di Tommaso. 2015. "Mapping forests with Lidar provides flexible,
accurate data with many uses." California Agriculture, 69 (1): 14-20.

5. Garcia-Gutierrez, J., L. Goncalves-Seco, and J. C. Riquelme-Santos. 2011. "Automatic
environmental quality assessment for mixed-land zones using lidar and intelligent
techniques." Expert Systems with Applications, 38 (6): 6805-6813.

6. Yang, B. S., Z. Wei, Q. Q. Li, and J. Li. 2013. "Semiautomated Building Facade
Footprint Extraction From Mobile LiDAR Point Clouds." IEEE Geoscience and Remote
Sensing Letters, 10 (4): 766-770.

7. Chiang, K. W., G. J. Tsai, Y. H. Li, and N. El-Sheimy. 2017. "Development of LiDAR-
Based UAV System for Environment Reconstruction." IEEE Geoscience and Remote
Sensing Letters, 14 (10): 1790-1794.

8. Kromer, R. A., D. J. Hutchinson, M. J. Lato, D. Gauthier, and T. Edwards. 2015.
"Identifying rock slope failure precursors using LiDAR for transportation corridor hazard
management." Engineering Geology, 195 93-103.

9. Neupane, S. R. and N. G. Gharaibeh. 2019. "A heuristics-based method for obtaining
road surface type information from mobile lidar for use in network-level infrastructure
management." Measurement, 131 664-670.

10. Lienert, Paul and Stephen Nellis. 2019. "Cheaper Sensors Could Speed More Self-
Driving Cars to Market by 2022." Available from: https://www.reuters.com/article/us-
autos-autonomous-lidar/cheaper-sensors-could-speed-more-self-driving-cars-to-market-
by-2022-idUSKCN1TD2MY.

11. McIntosh, Daniel. 2019. "Utilization of Lidar Technology - When to Use It and Why."
Kentucky Transportation Cabinet: University of Kentucky, Lexington. Available from:
https://rip.trb.org/Results?txtKeywords=lidar#/View/1638641.

12. Tarko, Andrew P., Kartik B. Ariyur, Mario A. Romero, Vamsi Krishna Bandaru, and
Cheng Liu. 2014. "Stationary LiDAR for Traffic and Safety Applications – Vehicles

49

Interpretation and Tracking." Purdue University. Available from:
https://pdfs.semanticscholar.org/e4a2/6ba366fd06c19830b68371abf3012fa30ba6.pdf.

13. Bennett, Jarod, Mather Saladin, Daniel Sizoo, Spencer Stewart, Graham Wood, Thomas
DeAgostino, and Christopher Depcik. 2021. "Design of an Efficient, Low-Cost,
Stationary LiDAR System for Roadway Condition Monitoring." ASME 2021
International Mechanical Engineering Congress and Exposition.

14. Tran, Dang M., Nathan Ahlgren, Christopher Depcik, and Hongsheng He. 2023.
"Adaptive Active Fusion of Camera and Single-Point LiDAR for Depth Estimation."
IEEE Transactions on Instrumentation and Measurement, 72 1-9.

15. Park, Kihong, Seungryong Kim, and Kwanghoon Sohn. 2018. "High-precision depth
estimation with the 3d lidar and stereo fusion." 2018 IEEE International Conference on
Robotics and Automation (ICRA).

16. Yu, Lequan, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018.
"Pu-net: Point cloud upsampling network." Proceedings of the IEEE conference on
computer vision and pattern recognition.

17. Li, Ruihui, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2019.
"Pu-gan: a point cloud upsampling adversarial network." Proceedings of the IEEE/CVF
international conference on computer vision.

18. Fan, Haoqiang, Hao Su, and Leonidas J Guibas. 2017. "A point set generation network
for 3d object reconstruction from a single image." Proceedings of the IEEE conference
on computer vision and pattern recognition.

19. Ma, Jiayi, Linfeng Tang, Meilong Xu, Hao Zhang, and Guobao Xiao. 2021.
"STDFusionNet: An infrared and visible image fusion network based on salient target
detection." IEEE Transactions on Instrumentation and Measurement, 70 1-13.

20. Li, Yue, Devesh K Jha, Asok Ray, and Thomas A Wettergren. 2015. "Feature level
sensor fusion for target detection in dynamic environments." American Control
Conference (ACC).

21. Sandström, Erik, Martin R Oswald, Suryansh Kumar, Silvan Weder, Fisher Yu, Cristian
Sminchisescu, and Luc Van Gool. 2022. "Learning online multi-sensor depth fusion. in
European Conference on Computer Vision." Springer.

22. He, Yu, Kechen Song, Qinggang Meng, and Yunhui Yan. 2019. "An end-to-end steel
surface defect detection approach via fusing multiple hierarchical features." IEEE
transactions on instrumentation and measurement, 69 (4): 1493-1504.

23. Cheng, Xun and Jianbo Yu. 2020. "RetinaNet with difference channel attention and
adaptively spatial feature fusion for steel surface defect detection." IEEE Transactions on
Instrumentation and Measurement, 70 1-11.

50

24. Yeung, Ching-Chi and Kin-Man Lam. 2022. "Efficient fused-attention model for steel
surface defect detection." IEEE Transactions on Instrumentation and Measurement, 71 1-
11.

25. Blankenau, Isaac, Daniel Zolotor, Matthew Choate, Alec Jorns, Quailan Homann, and
Christopher Depcik. 2018. "Development of a Low-Cost LIDAR System for Bicycles."
SAE International.

26. Ma, Fangchang and Sertac Karaman. 2018. "Sparse-to-dense: Depth prediction from
sparse depth samples and a single image." 2018 IEEE international conference on
robotics and automation (ICRA).

27. Lee, Byeong-Uk, Hae-Gon Jeon, Sunghoon Im, and In So Kweon. 2019. "Depth
completion with deep geometry and context guidance." 2019 International Conference on
Robotics and Automation (ICRA).

28. Cheng, Xinjing, Peng Wang, and Ruigang Yang. 2018. "Depth estimation via affinity
learned with convolutional spatial propagation network." Proceedings of the European
conference on computer vision (ECCV).

29. Park, Jinsun, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So Kweon. 2020. "Non-local
spatial propagation network for depth completion." Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, Proceedings, Part XIII 16. Springer.

30. Liu, Sifei, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, and Jan
Kautz. 2017. "Learning affinity via spatial propagation networks." Advances in Neural
Information Processing Systems, 30.

31. He, Hongsheng, Yan Li, and Jindong Tan. 2016. "Rotational Coordinate Transformation
for Visual-Inertial Sensor Fusion. in Social Robotics." Cham: Springer International
Publishing.

32. Laina, Iro, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. 2016. "Deeper depth prediction with fully convolutional residual networks." 2016
Fourth international conference on 3D vision (3DV).

33. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. "Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification." Proceedings
of the IEEE international conference on computer vision.

34. Hou, Xiaodi and Liqing Zhang. 2007. "Saliency detection: A spectral residual approach."
in 2007 IEEE Conference on computer vision and pattern recognition.

35. Canny, John. 1986. "A computational approach to edge detection." IEEE Transactions on
pattern analysis and machine intelligence, (6): 679-698.

36. Owen, Art B. 2007. "A robust hybrid of lasso and ridge regression." Contemporary
Mathematics, 443 (7): 59-72.

51

37. Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012."Indoor
segmentation and support inference from rgbd images." Computer Vision–ECCV 2012:
12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part V 12. Springer.

38. Sun, Zhanghao, David B Lindell, Olav Solgaard, and Gordon Wetzstein. 2020.
"SPADnet: deep RGB-SPAD sensor fusion assisted by monocular depth estimation."
Optics express, 28 (10): 14948-14962.

39. Han, Xian-Feng, Jesse S Jin, Ming-Jie Wang, Wei Jiang, Lei Gao, and Liping Xiao.
2017. "A review of algorithms for filtering the 3D point cloud." Signal Processing:
Image Communication, 57 103-112.

40. Ning, Xiaojuan, Fan Li, Ge Tian, and Yinghui Wang. 2018. "An efficient outlier removal
method for scattered point cloud data." PloS one, 13 (8): e0201280.

	Depcik_Low-Cost 3-D LIDAR Development for Transportation_ProjectCover.pdf
	Depcik_Low-Cost 3-D LIDAR Development for Transportation_finalPDF.pdf
	Disclaimer
	Abstract
	Chapter 1 Development of Low-Cost 3-D LIDAR Systems
	1.1 Background
	1.2 Problem Statement
	1.3 3-D LIDAR Hardware
	1.4 System Setup
	1.5 Third Generation LIDAR Results and Discussion
	1.6 Fourth Generation LIDAR Results and Discussion

	Chapter 2 Depth Sensing Model
	2.1 Background
	2.2 Model Architecture
	2.2.1 Encoder
	2.2.2 Decoder
	2.2.3 Adaptive Active Fusion
	2.2.4 Spatial Propagation

	2.3 Optimizing Function
	2.4 Evaluation Metrics
	2.5 Point Cloud Representation
	2.6 Experiments
	2.7 Results and Discussions
	2.8 Conclusions

	Chapter 3 Point-Cloud Outliers Removing
	3.1 Background
	3.2 Statistical-based filtering – Statistical Outliers Removal (SOR)
	3.3 Iterative Statistical Outliers Removal (ISOR)
	3.4 Evaluation Metrics
	3.5 Results and Discussion
	3.6 Conclusions

	References

